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ABSTRACT

The NOAA National Water Model (NWM) became operational in August 2016, producing the first ever

real-time, distributed, continuous set of hydrologic forecasts over the continental United States (CONUS).

This project uses integrated hydrometeorological assessmentmethods to investigate the utility of theNWMto

predict catastrophic flooding associated with an extreme rainfall event that occurred in Ellicott City,

Maryland, on 27–28May 2018. Short-range forecasts (0–18-h lead time) from theNWMversion 1.2 are explored,

focusing on the quantitative precipitation forecast (QPF) forcing from the High-Resolution Rapid Refresh

(HRRR) model and the corresponding NWM streamflow forecast. A comprehensive assessment of multiscale

hydrometeorological processes are considered using a combination of object-based, grid-based, and hydrologic

point-based verification. Results highlight the benefits and risks of using a distributed hydrologic modeling tool

such as the NWM to connect operational CONUS-scale atmospheric forcings to local impact predictions. For

the Ellicott City event, reasonably skillful QPF in several HRRR model forecast cycles produced NWM

streamflow forecasts in the small Ellicott City basin that were suggestive of flash flood potential. In larger

surrounding basins, theNWMstreamflow responsewasmore complex, and errors were found to be governed by

both hydrologic process representation, as well as forcing errors. The integrated, hydrometeorological multi-

scale analysis method demonstrated here guides both research and ongoing model development efforts, along

with providing user education and engagement to ultimately engender improved flash flood prediction.

1. Introduction

On 27 May 2018 Historic Ellicott City, Maryland,

experienced for the second time in 22 months a ‘‘1-in-

1000 chance’’ torrential rainfall event that brought cat-

astrophic flood damage (nearly $10.5 million, according

to the NOAA StormData database) and one fatality.

Heavy rainfall, totaling between 150 and 300mm in

the heaviest 6-h band, fell in central Maryland (Fig. 1).

The flood damaged many buildings and vehicles. Some

roads were washed out, and land erosion and localized

landslides were reported in the region (NationalWeather

Service 2018).

Forecasting such rare, intense, small-scale flood

events remains a salient challenge in weather and hy-

drologic prediction. This event is thus examined as a

case study that exemplifies many of the challenges typ-

ically faced in forecasting extreme flash floods. While

there aremany existingmodels and forecasting practices

established for flash flood prediction, here we specifi-

cally examine the performance and future potential of

forecasting events such as the Ellicott City 2018 flood us-

ing the operational National Oceanic and Atmospheric

Administration (NOAA)NationalWaterModel (NWM).

Flash flood forecasting has benefitted from a number

of observational and modeling advancements over
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recent decades, but a progressive focus toward smaller

spatial scales presents new challenges at the interface

of hydrology and meteorology. Streamflow forecasts

strongly depend on the quality of the meteorological

inputs that are provided to the hydrological model;

meteorological forcing, model structure, and parametric

uncertainty all affect the final streamflow forecast.

Considering the vast suite of uncertainties in both the

atmospheric forcings and those intrinsic to the hy-

drological modeling framework, understanding error

propagation through the forecast chain is challenging,

but essential to improving predictions (Collier 2007).

The NWM officially became an operational hydro-

logic forecasting system in August 2016, producing real-

time, high-resolution, distributed hydrologic forecasts

for the continental United States (CONUS), its con-

tributing basins, and Hawaii. The initial objective of the

NWM is to complement hydrologic guidance at current

National Weather Service (NWS) river forecast loca-

tions and significantly expand forecast coverage and

type in underserved locations. At the time of writing,

few studies have been published regarding the usage and

performance of this new modeling framework, espe-

cially in conjunction with a detailed study on the mete-

orological forecast performance. Given the complexity

and scale of this hydrologic forecast system, ongoing

evaluation is crucial to guide future improvements.

In this work the 2018 Ellicott City flash flood event

is studied with a particular focus on short-range

(0–18 h) streamflow forecasts from the NWM, forced

by the quantitative precipitation forecasts (QPFs)

from the High-Resolution Rapid Refresh (HRRR)

model (Benjamin et al. 2016). The short-range forecast

configuration is intended to focus on small spatial and

temporal scales, which still represent one of the most

challenging forecast targets for operational numerical

weather prediction (Collier 2007). It is thus also the scale

that would benefit greatly from the NWM’s high reso-

lution (2.7 million river segments for channel routing;

1-km land surface and 250-m surface routing grids) and

spatially distributed forecast capabilities in potential

flash flood conditions. Though the NWM is implemented

at a higher resolution than most other current CONUS

operational forecast models, the Ellicott City watershed

represents a particular challenge in testing the skill at

such a small scale: the Ellicott City watershed (9.5km2)

barely covers 9 grid elements over the total 17 000000

1-km NWM land grid elements. Coupled with the fact

that the CONUS-scale, distributed NWM differs from

current operational hydrologicmodels that are run offline

and have been locally calibrated over long periods, a

successful NWM forecast of an event on this scale would

seem almost serendipitous if it were able to ‘‘nail’’ a

highly localized flood forecast of this magnitude.

The objective of this paper is to investigate the short

term predictive capability of NWM in a flash flood prone

area, while attempting to understand the relative un-

certainties attributable to precipitation forcings versus

hydrologic process representation. While a complete

quantitative separation of model uncertainty within

the flood forecasting chain is beyond the scope of this

single case study, we demonstrate a method that can

guide future studies of similar events. One anticipated

outcome of this work is to use the findings to inform

FIG. 1. Study area and Ellicott City watershed. (a) The position of Maryland in the continental United States,

(b) the position of Ellicott City in the state of Maryland, and (c) the 9.5-km2 watershed that encloses the Ellicott

City downtown area.
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ongoing NWM model assessment and future version

improvement, ultimately resulting in improved local

forecast guidance.

The study addresses these targets using a multiscale

approach and a combination of verification methods to

combine a meteorological mesoscale QPF evaluation,

an analysis of the small catchment hydrology response,

and an urban-scale flood inundation analysis. The study

region is described in section 2, and specific event details

are provided in section 3. Data and methods are de-

scribed in section 4, while the results are discussed in

section 5. Final conclusions are drawn in section 6.

2. Study region

Ellicott City, Maryland, was founded in 1772 as a mill

town on the Patapsco River. The town has flooded

multiple times from the larger Patapsco River that runs

alongside the historic downtown district, as well as from

the TiberRiver, which runs through it (Fig. 1). TheTiber

watershed is quite small, on the order of several square

kilometers, but consists of four small branches: Tiber

Branch, New Cut Branch, Autumn Hill Branch, and

Hudson Branch, which converge near Main Street in

Ellicott City to form the Tiber (Fig. 1c). This watershed

contains rugged terrain with sharp gradients, sometimes

dropping more than 30-m elevation over 100m of hori-

zontal distance (;178 slope).
The Patapsco River Lower North Branch watershed

(where Ellicott City is located) is about 306 km2 and

contains a variety of land uses. Land cover is 49% de-

veloped, 41% forest area, and 10% agricultural. The

general tendency in the watershed is to have developed

lands near the headwaters and upstream locations,

while forested land is in downstream areas (Maryland

Department of Natural Resources Watershed Services

2005). Impervious surfaces (including roads and roof-

tops) are present in a high percentage in most of the

watershed, further preventing stormwater from infil-

trating the ground. The Tiber–Hudson watershed, which

contains Ellicott City, has the highest percentage of

impervious surfaces (about 25%–30%), and this signif-

icantly impacts local stream drainage.

Most of the soils in the area are characterized as stony

or shallow bedrock. In the Tiber Branch there is a high

concentration of hydric soils with limited infiltration

capacity (Maryland Department of Natural Resources

Watershed Services 2005). The remaining portion of the

Ellicott City basin is characterized by soils with gener-

ally good infiltration capacity; however, the topographic

slope often exceeds 8%, rendering runoff too fast to

infiltrate, despite permeable soil types. In summary, the

area is amix of hydric soils (highly saturated), stony soils

(limited infiltration capabilities), and complex topogra-

phy; these factors enhance surface runoff in this region

and create a flashy rainfall–runoff response.

Because of the combination of these regional soil

characteristics and Ellicott City’s location in a valley at

the confluence of two major creeks, the area has been

affected by a number of major floods. While many his-

toric floods have originated from the Patapsco River

overflowing its banks and flooding upstream areas (e.g.,

Hurricane Agnes in 1972 along with many other events),

the 2016 and 2018 floods were instead caused by rapid

upstream confluence of water caused by intense rainfall

over the steep upstream branches of the Tiber water-

shed (Fig. 1). These last two flood events happened

within a 22-month period (30 July 2016 and 27 May

2018), each causing catastrophic flood damage. Though

many similarities exist with the 2016 event, this study

will focus on the May 2018 event (as the NWM was not

yet operational in July 2016.)

3. Event overview

The synoptic weather pattern on 27 May 2018 was

dominated by high pressure over much of the mid-

Atlantic U.S. region, allowing high temperatures and

record-breaking precipitable water values (nearly 50mm;

Fig. 2a) to produce convective available potential energy

(CAPE) values between 1000 and 3000Jkg21. A line of

thunderstorms initiated along a surge of relatively colder

offshore air from the North Atlantic Ocean moving from

northeast to southwest (Fig. 2b); the so-called ‘‘backdoor

cold front’’ was marked by low pressure at the surface

that further enhanced convergence of moist, unstable air

as the front moved across Maryland. As the line of

thunderstorms formed and moved east-southeastward,

midlevel winds remained westerly, creating training cells

over central Maryland from approximately 1800 UTC

27 May to 0000 UTC 28 May 2018 (Fig. 3).

The training behavior of the convective cells led to

persistent heavy rainfall over the region from 1800 to

2300 UTC 27 May, punctuated by intensified pulses as

multiple low-level boundaries triggered and maintained

precipitation for several hours. Over Ellicott City itself,

precipitationpeakedfirst between1900and2000UTC, after

which there was a short lull before rainfall reached maxi-

mum intensity between 2120 and 2150 UTC. Surrounding

cities in central Maryland also received significant rainfall,

but the maximum event total accumulation was over the

Ellicott City region, and according to station- and radar-

based observations (discussed below), exceeded 200mm

(Fig. 2c; National Weather Service 2018).

NWS forecasts recognized the potential for heavy

rainfall several days in advance, with a Hazardous
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Weather Outlook issued 25 May citing ‘‘thunder-

storms capable of producing locally heavy rain may

lead to isolated incidents of flooding on Saturday

[26 May] and Sunday [27 May].’’ On the morning of

27 May a flash flood watch was issued for the region,

progressing to a flood warning issued at 1919 UTC,

then a flash flood warning at 2026 UTC, and finally

culminating in a flash flood emergency declaration at

2040 UTC.

Rapid river rises and swift increases in river stage

were observed not only in Ellicott City, but also in

nearby locations. The Patapsco River at Ellicott City

peaked around 2230 UTC, reaching a level close to the

moderate flood stage. Due to heavy rain upstream and

in surrounding areas, high water volume was already

present in the Patapsco; this prevented Ellicott City’s

flood waters (from both the Tiber River and from

the urban land surface) from draining effectively into

the Patapsco (Fig. 1). Other streamflow gauges along the

Patapsco (near Catonsville and Elkridge) approached

or exceeded moderate flood level thresholds. Flooding

was also widespread along the Patuxent and Gwynns

Falls catchments in Catonsville, Baltimore City, and the

Dundalk and PerryHall areas (NationalWeather Service

2018). While the Ellicott City basin is ungauged, indirect,

postmortem peak flow estimates by the USGS calculated

peak discharge on the Hudson, Catrock (Tiber), and

Autumn Hill/New Cut branches to be 84.95, 76.45, and

174.43m3 s21 respectively, all exceeding the estimates

from the 2016 flooding event.

4. Data and methods

The 2018 Ellicott City flood is examined using a

multiscale, multiprocess approach, starting from the

meteorological forcing inputs of the NWM at 1 km, to

the runoff and streamflow response at the hydrologic

catchment scale. The workflow described in Fig. 4

includes a detailed QPF analysis of the short-range

NWM forcings from the HRRR model, NWM stream-

flow forecast verification for the Ellicott City area and

surrounding catchments, and flood inundation assess-

ment at the urban/local scale in historic downtown

Ellicott City where the greatest flood impacts occurred.

FIG. 2. Large-scale synoptic pattern and resulting rainfall from the backdoor cold front that affected Ellicott City on 27 May 2018.

(a) Precipitable water (mm; as shaded in colorbar) and mean sea level pressure (black contours; interval 1 hPa, as labeled) from the

NOAA Rapid Refresh (RAP) model analysis. (b) The 2-m specific humidity (kg kg21; as shaded in colorbar), mean sea level pressure

(black contours; interval 0.5 hPa), 10-mwind vectors from the RAPmodel analysis valid 1800UTC 27May 2018; KLWX radar reflectivity

overlaid valid 1804 UTC 27 May 2018. (c) MRMS 24-h observed precipitation analysis (mm; as shaded in colorbar) valid 1200 UTC

28 May 2018.
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A detailed description of the study methods is provided

in the following paragraphs.

a. QPF verification

The QPF analysis compares the short-term precipi-

tation forecasts produced by the NCEP HRRR model

with the quantitative precipitation estimation (QPE)

product from the gauge-corrected Multi-Radar Multi-

Sensor (MRMS) analysis (Zhang et al. 2011, 2014). The

high temporal (2min) and spatial (1 km) resolution in

addition to ample surface observations and complete

radar coverage in this region render the MRMS prod-

uct well suited for flash flood forecasting applications,

particularly when rainfall–runoff response times are

subhourly (e.g., in steep headwater basins and in urban

areas like Ellicott City) (Gourley et al. 2017). Verification

analyses and statistics are produced using the Model

Evaluation Tools (MET) developed by the NCAR

Developmental Testbed Center (Developmental Testbed

Center 2018).

The HRRR model (Benjamin et al. 2016) is the me-

teorological model used to force the NWM short-range

cycle, and at the time of the 2018 Ellicott City flood,

produced hourly forecasts from 0- to 18-h lead time. The

HRRR model uses 3-km grid spacing and is built upon

the Advanced Research core of the Weather Research

and Forecasting Model (Skamarock et al. 2008). It is an

hourly updated, cloud-resolving model for operational

use that runs over the CONUS domain. HRRR model

version 2 was operational at the time of the 2018 Ellicott

FIG. 3. Hourly evolution of radar reflectivity from the KLWX NEXRAD at (or the closest instant to) (a) 1900,

(b) 2000, (c) 2100, (d) 2200, and (e) 2300 UTC 27 May and (f) 0000 UTC 28 May. The radar reflectivity values

corresponding to the color shading are shown in the legend at the bottom of the figure.
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City flood and is thus the version examined here. The

study analyzes the HRRR forecasts cycles from 1300 to

1900 UTC on 27 May, which captures the hours leading

up to and including the most intense precipitation

(2000 UTC 27 May–0000 UTC 28 May).

The QPF analysis is performed over a region includ-

ing Maryland and portions of surrounding states to

capture the main mesoscale characteristics of the event

(Fig. 1b). QPF is also evaluated over key watersheds in

order to consider the precipitation forecast (and all of

its possible displacement, intensity, and timing errors)

through the more hydrologically relevant concept of

mean areal precipitation (which connects more directly

to NWM outputs and hydrologic impacts. Figure 5b

shows the watershed locations, and Table 1 provides a

summary of the main characteristics of the selected sites

where the streamflow evaluation is performed. Peak

discharge per unit area (defined as the peak flow over

the event divided by the contributing watershed area) is

also provided for each site as a reference point using

USGS observed peak flows where available.

Hourly HRRR precipitation is verified against the

MRMS QPE by first regridding the HRRR data at

its native resolution (3-km grid spacing) to the same

MRMS grid (1-km grid spacing) and then bilinearly in-

terpolating the data with a 23 2 interpolation box. The

forecast cycles are then verified using a suite of MET

gridded and object-based verification tools. Standard

verification statistics [e.g., bias (mean average error),

RMSE, correlation] are computed hourly over matched

QPE–QPF grid points, as well as for accumulated sta-

tistics over the full 18-h forecast cycle and summed

gridded fields.

Finally, mesoscale storm characteristics are evaluated

with an object-based verificationmethodusing theMethod

for Object-Based Diagnostic Evaluation (MODE) tool

from the MET package. Object-based verification is

important for high-resolution forecast evaluation as it

helps to avoid the ‘‘double penalty’’ problem whereby

an overall skillful, but slightly spatially offset, model

forecast is penalized for under- (over) prediction where

precipitation was (not) observed (Rossa et al. 2008).

Here we aim to also recognize where forecasts with

generally accurate intensity, timing, and only slightly

displaced location characteristics still may offer value

to a forecaster. To this end, MODE identifies objects

that a human eye would recognize as a ‘‘region of in-

terest’’ in both model and observation fields using two

main parameters: the convolution radius and the con-

volution threshold. The convolution radius specifies the

radius of the convolution filter that is applied to the

precipitation field (expressed in number of grid boxes),

while the convolution threshold applies a filter on

the intensity of the fields that are identified within the

objects. The convolution radius and the convolution

threshold are set by the user through several iterative

experiments. In this study the convolution radius and

the convolution threshold are set to 8 grid boxes and

10mm over 1-h rainfall accumulation, respectively.

MODE calculates attributes of interest for each of the

identified objects (e.g., area, intensity, shape of the

FIG. 5. Watersheds (polygon boundaries) examined in the study

area with USGS gauge locations (points) and the NWM flow line

network (blue lines).

FIG. 4. Multiscale methodology from larger (CONUS) to smaller scales (urban flooding).
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identified object, position of the centroid) andmerges and

matches accordingly objects that have similar character-

istics within the same field (defined as ‘‘merging’’) and

across the model and the observation field (defined

as ‘‘matching’’). Finally, each of the corresponding

matching and merging objects are ‘‘paired’’ and used by

MODE to calculate the statistics.

Because the attributes of complexity and intensity

are analyzed in the results discussion in section 5a(2), a

brief definition of these attributes is given hereinafter.

Complexity is defined as the area of the object to the

area of its convex hull (defined as the smallest convex set

that contains a set of points or an object), while the in-

tensity is considered as the intensity of the field inside

the object and it can be a sum of all the intensities in the

object (intensity sum) or the percentile of the intensity.

Since MET offers many possible evaluation metrics,

we select a subset most relevant for the QPF analysis

and refer the reader to the MET literature (Davis et al.

2006; Brown et al. 2009; Bullock et al. 2016) and to the

MET user guide (Developmental Testbed Center 2018)

for additional information.

b. NWM evaluation

NWM streamflow forecasts are compared with

available USGS and NWS streamflow observations

to understand the runoff response from the HRRR

meteorological forcing for this event.We note that while

comparing NWM forecast guidance to existing opera-

tional hydrologic forecast guidance would be desirable,

the catchments that feed into Ellicott City itself are

ungauged and do not include any official National

Weather Service River Forecast Center forecast points.

Therefore, the NWM is unique in its ability to be a po-

tential forecast tool for both streamflow and gridded

land surface variables in this area. This presents an op-

portunity and a challenge, as relative to local hydrologic

models with rich observational histories from which to

locally calibrate and benchmark forecasts, there is a

significant challenge in communicating how one uses

NWM forecasts as guidance in locations where there

simply was not any prior.

1) THE NATIONAL WATER MODEL (NWM)

The NWM modeling framework is based on a con-

figuration of the Weather Research and Forecasting

(WRF)-Hydro modeling system (Gochis et al. 2015),

which combines the Noah-MP land surface model (Niu

et al. 2011) at 1 km to compute infiltration and exfiltra-

tion, with a diffusive wave overland routing formulation

(Julien et al. 1995; Ogden 1998) across the land at 250-m

resolution; the channel routingmodule then receiveswater

from adjacent catchments and uses the Muskingum–

Cunge method (Garbrecht and Brunner 1991) to route

water down a flow network based on the National

Hydrography Dataset version 2 (NHDPlusv2) (McKay

et al. 2012). The NWM version 1.2 analyzed in

this study uses the National Land Cover Database

2011 (NLCD 2011; Homer et al. 2015), upscaled from

30m to a 1-km grid by taking the major class within

that pixel, and takes the soil characteristics from State

Soil Geographic (STATSGO) 2006 (Wolock 1997),

downscaled with the same method from a resolution

of 18 3 28 to 1 km.

As of version 1.2, the NWM simulates streamflow

and other hydrologic variables in four different tempo-

ral cycles: analysis and assimilation cycle (AnA), and

short- (0–18h), medium- (0–10 days), and long-range

(0–30 day, ensemble) forecast configurations (Office of

Water Prediction 2016). For the Ellicott City case study,

we focus on the short-range (0–18h) forecast, and

also use the AnA cycle, which includes streamflow ob-

servations via assimilation and meteorological forcings

from the gauge-corrected MRMS, to provide a sense

of streamflow in ungauged areas. The AnA cycle is

run hourly to produce a real-time analysis of current

TABLE 1. Main characteristics of the watersheds in the study and peak discharge per unit area information regarding the watersheds in

exams for the event. The ELLI watershed peak discharge per unit area has an asterisk because it was calculated using the NWM analysis

values, since it is an ungauged site.

Name Full name Gauge River

Drainage

area (km2)

Peak discharge per

unit area (m3 s km22)

ELLI Ellicott City at the confluence Ungauged Tiber 9.5 13.09*

PAS1 Patapsco River at Ellicott City ELPM2 (NWS) Patapsco 761.5 0.70

PAS2 Patapsco River near Catonsville USGS 01589025 Patapsco 780 0.83

PAS3 Patapsco River near Elkridge USGS 01589035 Patapsco 808.1 0.93

PTX1 Little Patuxent River tributary above Lake

Elkhorn near Guilford

USGS 01593450 Little Patuxent 6.4 4.04

PTX2 Little Patuxent River at Guilford USGS 01593500 Little Patuxent 98.4 2.17

PTX3 Little Patuxent River at Savage USGS 01594000 Little Patuxent 254.9 1.24

GWF1 Gwynns Falls at Washington Blvd at Baltimore USGS 01589352 Gwynn Falls 170.7 2.62
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hydrological conditions at the surface and near-surface

over the CONUS domain. The AnA cycle also pro-

vides the initialization states for the short, medium

and long-range forecasts. Streamflow observations are

assimilated hourly at about 7000 USGS gauge loca-

tions depending on the availability and quality of

the observed data. About 1260 lakes and reservoirs

are included in the model version analyzed here, using

a simplified level-pool scheme parameterization. The

hourly short-range forecasts evaluated in this work were

forced by the HRRR model and initialized using the

AnA configuration. For further reading on the NWM,

the reader is referred to Office of Water Prediction

(2016) and references therein.

2) STREAMFLOW EVALUATION

Streamflow observations are provided by USGS

stream gauges and available NWS local streamflow lo-

cations. Figure 5 illustrates the location of the gauge

locations most impacted by the 2018 Ellicott City flood,

as well as relevant upstream watersheds, and Table 1

lists the main watershed characteristics and illus-

trates the peak discharge per unit area observed

during the event. These watersheds are also used for

the catchment-scale QPF analysis.

The short-range NWM streamflow forecasts from the

hourly model start times from 1300 to 1900 UTC 27May

2018 are compared to gauge observations.

Forecast skill is assessed both by qualitative hydro-

graph comparison, and quantitative forecast skill score

evaluation [e.g., correlation (Hazewinkel 2013), Nash–

Sutcliffe efficiency (NSE; Nash and Sutcliffe 1970),

bias (Van der Vaart 1961), peak flow (Mockus 1964),

time of the peak (Mockus 1964), and streamflow volume

(Mockus 1964)]. Runoff results are compared to the

mean average precipitation evaluation. This comparison

evaluates the combined (meteorological and hydrolog-

ical) forecast skill of each cycle and illuminates times

and locations propagation of possible QPF errors into

the streamflow response.

c. Flood inundation analysis

Flood inundation maps in the urban Ellicott City

area were derived from the NWM using the Height

Above Nearest Drainage (HAND) method (Rodda

2005; Rennó et al. 2008; Nobre et al. 2016; Tesfa et al.

2011; Zheng et al. 2018). The methodology is very sim-

ilar to Liu et al. (2018) that leveraged a 10-m HAND

grid derived from the USGS 10-m digital elevation

model. In general, as described in Nobre et al. (2016),

the HANDmethod identifies the difference in elevation

between each land surface grid point and the stream bed

cell to which it drains. This normalized relative elevation

grid (i.e., the HAND grid) allows a flood stage value

along a given river segment to be mapped to the catch-

ment, essentially ‘‘flooding’’ all of the cells that are at or

below the flood stage value (i.e., the HAND value),

resulting in inundation extent along the channel.

The experimental NWM–HAND method used in

this study uses operational NWM streamflow output

(i.e., water already in the channel), converted to stage,

to simulate inundation on the land surface. NWM

streamflow is translated to stage, using synthetic rating

curves along each individual stream segment. Channel

properties such as volume, cross-sectional area, wetted

perimeter, and hydraulic radius are derived using

this method, assuming a Manning’s value and using

NHDPlus channel slope. While some uncertainty is in-

troduced by these assumptions, only inundation extent is

considered here (versus water depth modeling), and so

we use it as an initial demonstration of capability. The

reader is referred to Zheng et al. (2018) for the method

of derivation of synthetic rating curves.

The HAND method is applied to the short-range

NWM forecast cycles from 1300 to 1900 UTC 27 May.

The maximum inundation extent for a single forecast

(e.g., 1300 UTC) is compared to the maximum inunda-

tion extent derived from the AnA files over the same

period, herein assuming that the NWM analysis can be

considered as a sufficient proxy to represent the true

conditions. To support this assumption, the flood

maps are compared to 12 street cameras that were

placed in historical downtown Ellicott City by an as-

sociation of citizens after the 2016 flood (Ellicott City

Unilux Camera Network; Peters 2019). Camera loca-

tions are shown in Fig. 6. The cameras also allow for

evaluation of the temporal evolution of the flooding

inundation extent.

5. Results and discussion

a. Mesoscale QPF verification

1) GRIDDED VERIFICATION

In this section precipitation is evaluated by comparing

the HRRR forecast cycles from 1300 to 1900 UTC

27 May with MRMS QPE. Figure 7 shows mean pre-

cipitation error over the Maryland region calculated

over the full forecast cycle length (18h) using the MET

series analysis tool (section 4a). Across all forecast cy-

cles, the accumulated absolute bias shows an underes-

timation of precipitation over Ellicott City. The spatial

pattern also highlights areas of overestimation; side-by-

side couplets of over and underforecast of the QPF

suggest displacement errors more than a systematicQPF
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underestimation over the area. While there is clearly

run-to-run variability as well as some smoothing of

hourly displacement errors from this statewide run-total

perspective, relative to the large amounts of precipita-

tion (greater than 200mm) that led to the flood event,

the HRRR forecasts generally appear to be skillful at

the mesoscale, depicting considerable likelihood of an

intense precipitation event in the central Maryland area.

Zooming in to a watershed scale centered around

Ellicott City, and focusing on the six hours (from

1800 UTC 27 May to 0000 UTC 28 May) encompassing

the flood event, the MRMS observations (Fig. 8a) indi-

cates the most intense 6-h rainfall over the Ellicott

City watershed (ELLI), the lower part of the Patapsco

(PAS1, PAS2, and PAS3), lower GWF1, and upper

Patuxent watersheds. The 1300 (Fig. 8b), 1500 (Fig. 8d),

and 1600 UTC (Fig. 8e) HRRR cycles reveal eastward

and northward spatial displacements of the heaviest

precipitation totals, while the 1700 UTC cycle (Fig. 8f)

displaces 6-h rainfall maxima both north and south. The

1800 UTC cycle (Fig. 8g) exhibits the closest represen-

tation to MRMS and the most similar spatial orienta-

tion, even if still underestimating QPF over the Ellicott

City watershed (ELLI). The 1400 UTC cycle (Fig. 8c)

produces the salient features of the heavy precipitation,

even if the pattern of heavy precipitation extends

too far into the upper reaches of PAS1. Finally, the

1900 UTC cycle (Fig. 8h) has similar characteristics of

the 1800 UTC cycle in terms of spatial orientation but

overestimates precipitation on the upper Patapsco and

places the most intense rainfall core too far south.

In Figs. 9 and 6h (1800 UTC 27 May–0000 UTC

28 May) HRRR QPF is aggregated at the single water-

shed scale, and the mean areal precipitation across each

basin is compared the same quantities fromMRMS. This

analysis confirms HRRR’s underestimation over ELLI

across all HRRR cycles, with the lowest bias seen in

the 1800 UTC cycle. Across the other watersheds, the

mean areal precipitation biases are variable in sign,

and vary with HRRR forecast cycle, but overall the

1800 UTC cycle performs best, particularly in the areas

of most intense rainfall.

2) OBJECT-BASED VERIFICATION

Particularly for hydrologic impact applications, small

spatial displacements in precipitation can matter a great

deal, and such displacements can be difficult to dis-

cern from standard grid-based verification methods. For

this reason, we also evaluate storm and precipitation

evolution in space and time using MET’s MODE

object-based verification tool. An example of possible

displacement that has significant effects for hydro-

logical application is given by the MODE analysis in

Fig. 10, comparing the 1300 UTC cycle with MRMS at

2200 UTC (Figs. 10a,b): the HRRR forecasts intense

and localized precipitation with similar mesoscale

characteristics to those observed, but due to displacement

error, precipitation does not fall in any of the watersheds

that received flooding. MODE pairs an observed precip-

itation ‘‘object’’ with the most appropriate precipitation

forecast ‘‘object,’’ as shown in Figs. 10a1 and 10b2. The

same color (or object ID, as defined in the MODE tool)

within the forecast or observation field indicates that the

two objects, even if spatially separate, are merged in the

same merged object, due to similar characteristics. When

the same color (or object ID) is matching across the

forecasts and observations fields, it means that MODE

has paired the forecasted object (or merged objects) with

the corresponding(s) observed object (merged objects).

Figure 11 summarizes the temporal evolution of the

matched observed and forecasted objects valid from

2000 UTC 27 May to 0000 UTC 28 May at hourly

FIG. 6. Position of the street cameras used in the flood inundation map comparison.
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time steps from all the cycles from 1300 (Fig. 11a) to

1900 UTC (Fig. 11g). While grid-based aggregate an-

alyses indicate systematic QPF underestimation over

Ellicott City, if one takes an object-based approach and

instead follows the most intense precipitation objects

in space and time, there is decidedly less error indicated,

as forecast and observed values of total object intensity

(Fig. 11, third column) and of the 90th percentile object

FIG. 7. (a)–(g)Accumulated absolute bias betweenHRRRcycles initialized from 1300UTC to 1900UTC27May

2018 and MRMS QPE, as obtained from the full 18-h duration of the short-range cycle using the Series Analysis

tool fromMET. The blue color means underestimation of the HRRR cycle, as compared to the MRMS, while the

red colormeans overestimation of theHRRRcycle over theMRMSQPE. The gray rectangle highlights theHRRR

underestimation compared to MRMS, over the area of the Ellicott City watershed (in bright red contours).
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intensity (Fig. 11, fourth column) are actually quite

closely matched.

The 1800 UTCHRRR cycle performs well in terms of

intensity and area over the full length of the forecast

cycle, and theHRRR ‘‘complexity’’ (a measure of shape

characteristics) appears quite skillful across most cycles.

The 1300 and 1400 UTC HRRR cycles (Figs. 11a,b)

also exhibit greater forecast–observed agreement in

terms of area, complexity, and intensity. The 1500, 1600,

1700, and 1900 UTC (Figs. 11c, 11d, 11 e, and 11g, re-

spectively) cycles show an overestimation of size (area)

(Fig. 11, first column) and summed intensity of the

forecast objects (Fig. 11, third column), although fo-

cusing on the 90th percentile precipitation intensity

demonstrates greater model skill (Fig. 11, fourth col-

umn). In summary, the MODE analysis suggests that

HRRR is actually slightly overestimating the intensity

of the main precipitation features (albeit spatially dis-

placed) in most of the cycles, with relatively better

performance in the 1800 and 1900 UTC cycles.

b. Watershed-scale evaluation

In this section, we combine the precipitation-only

evaluation performed in section 5a with the NWM

short-range streamflow forecast. While Ellicott City

bore the brunt of the event in terms of flood damage

and loss of human life, surrounding watersheds also

experienced significant flooding, as discussed in

section 3. To facilitate the NWM assessment over the

collection of watersheds described in Fig. 5 and

Table 1, the results will be discussed in terms of

moving down the network from small headwaters to

larger drainage basins (and those within). In the

small upstream watershed discussion [section 5b(1)],

the results over Ellicott City (ELLI) and over the

Little Patuxent River tributary above Lake Elkhorn

near Guilford (PTX1) are discussed and summarized

in Fig. 12. Because the ELLI watershed does not have

streamflow observations and we can only compare

the NWM to the analysis, a nearby small watershed

with similar characteristics and size, PTX1, is used

for comparison.

The three closing sections of the watersheds with

relatively larger drainage areas were evaluated with

respect to streamflow response [section 5b(2)]: the

Gwynns Falls River at Washington Blvd. at Baltimore

(GWF1), the Little Patuxent River at Savage (PTX3),

and the Patapsco River near Elkridge (PAS3). Note that

FIG. 8. The 6-h rainfall accumulation from 1800 to 0000 UTC for (a) MRMS QPE, (b) HRRR 1300 UTC, (c) HRRR 1400 UTC,

(d) HRRR 1500 UTC, (e) HRRR 1600 UTC, (f) HRRR 1700 UTC, (g) HRRR 1800 UTC, and (h) HRRR 1900 UTC (note 5-h accu-

mulation valid for available forecast hours from 1900 UTC to 0000 UTC). Watershed boundaries are indicated by black solid lines and

correspond to watersheds names identified in Fig. 5.
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several intermediate watersheds (PAS1, PAS2, PTX2)

were also evaluated but are not included in the main

analysis below since they did not show a significantly

different response from the corresponding downstream

sections. The NWM analysis cycle is also shown in

Figs. 12 and 13 to both validate against observations and

to provide a best estimate of observed flow for the un-

gauged ELLI watershed. The NWM assimilates gauge

observations at all available USGS streamflow locations

across its modeling domain, and, consequently, we expect

FIG. 9. Mean areal precipita-

tion accumulated over 6 h (from

1800 UTC 27 May to 0000 UTC

28May) for each of the watersheds

in the study. Red bars represent the

forecasted mean areal rainfall over

the HRRR cycles, while blue bars

represent the corresponding values

of QPE from MRMS. The number

at the top of the bars represents the

actual value of 6-h accumulated

mean areal precipitation.
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output from the analysis to match the USGS observations

at eachUSGS site. However, at the ungauged ELLI site,

since there are no observations available to assimilate

here or upstream, the output is strictly from the model

simulation.

Quantitative streamflow evaluation statistics are also

summarized in the lower panels of Figs. 12 and 13.

Statistical scores used included correlation, NSE, bias,

magnitude, and time and volume of the peak to better

evaluate each NWM forecast cycle in the different

watersheds.

1) ANALYSIS OF SMALLER WATERSHEDS

As discussed in section 3, Ellicott City was impacted

by multiple subhourly pulses of rainfall from 1900 to

2300 UTC 27May. Due to its hourly time resolution, the

MRMS product depicts these subhourly rainfall spells

as a single intense rainfall peak from 1900 to 0000 UTC,

FIG. 10. METMODE comparison between (left) HRRR 1-h accumulated precipitation from the 1300 UTC cycle and (right) MRMS

at 2200 UTC 27 May. (a1) HRRR forecast and (b1) MRMS raw precipitation fields; (a2) HRRR and (b2) MRMS MODE isolated

(convoluted and filtered) fields; identified objects from the (a3) HRRR 1300 UTC cycle and (b3) MRMS QPE. In (a3) and (b3),

the same ‘‘object ID’’ colors indicates merged (within the same forecast or observation field) and matched MODE objects across

forecast and observation fields. The black solid lines in the map represent the watersheds referred to in the text; the ELLI watershed is

highlighted in orange.

MARCH 2020 V I TERBO ET AL . 487

D
ow

nloaded from
 http://journals.am

etsoc.org/jhm
/article-pdf/21/3/475/4922725/jhm

d190125.pdf by N
O

AA C
entral Library user on 01 July 2020



with a maximum at 2100 UTC (Fig. 13a). The HRRR

shows some double-peaked rainfall from the 1400, 1800,

and 1900 UTC cycles, even though the main rainfall

peak is less intense than the MRMS peak and is delayed

several hours compared to the MRMS QPE maximum.

Over the small ELLI watershed, all other HRRR fore-

cast cycles show either no significant rainfall event or

maximum rainfall amounts that are less than half of the

MRMS observations.

The NWM streamflow from the short-range cycles for

the ungauged ELLI basin closely resembles the rainfall

(Fig. 12a): 1900, 1800, and 1400UTC initializations show

the highest streamflow peaks, and most closely match

the NWM analyses for streamflow volumes, even if still

underestimated. The other less skillful cycles exhibit

significantly lower flows and have poor statistics for

correlation and time of the peak due to the delayed

streamflow response. The NWM streamflow response

for ELLI watershed is thus very strongly linked to the

precipitation inputs provided by the NWM meteoro-

logical forcings from the HRRR model. Where the

HRRR model underestimates precipitation intensity

or was delayed in time, the NWM streamflow forecast

responds accordingly. The USGS indirect, computed

(postmortem) peak streamflow estimates listed in

section 3 suggest that the NWM analysis also under-

estimates flow in the small ELLI basin. Assessing if

this is the case is very difficult from these three indirect

measurements, since there is significant uncertainty in

the methods used to retrieve these values, it is unclear

how or whether the maximum peaks may have been

coincident, and the hourly time resolution of the

NWM does not allow to check if higher maxima were

reached within subhourly intervals. Nevertheless, for

this watershed, it still appears that the HRRR and the

NWM produce forecasts indicating the risk of intense

FIG. 11. (a)–(g) Evolution in time of theMODE scores, referred to the object over Ellicott City fromMRMSQPE (blue dashed line)

and the corresponding paired (merged and matched) one from the HRRR forecast (red solid line). The rows represent the forecast

cycles from 1300 UTC to 1900 UTC (from top to bottom), and the columns represent the different scores calculated for the paired

objects fromMODE (from left to right): area (the area of the object), complexity (the area of the object to the area of its convex hull),

intensity sum (the sum of the total intensities within object; mm h21), and intensity 90th (the 90th percentile of the intensity inside

the object; mm h21).
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FIG. 12.Mean (left) areal precipitation and (right) streamflow for the different forecasts fromHRRRandNWMrealizations, compared

with the observation provided byMRMS for USGS sites (black lines on the left and on the right, respectively). The NWManalysis cycle is

represented by the red dashed line as an additional term of comparison for streamflow. Tables under the plots show the statistical

performance for the watersheds discussed in the text. The results are reported for watersheds (a) ELLI and (b) PTX1.
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FIG. 13. Mean (left) areal precipitation and (right) streamflow for the different forecasts fromHRRR and

NWMrealizations, compared with the observation provided byMRMS forUSGS sites (black lines on the left

and on the right, respectively). TheNWManalysis cycle is represented by the red dashed line as an additional

term of comparison for streamflow. Tables under the plots show the statistical performance for the bigger

watershed upstream. The results are reported for watersheds (a) GWF1, (b) PTX3, and (c) PAS3.

490 JOURNAL OF HYDROMETEOROLOGY VOLUME 21

D
ow

nloaded from
 http://journals.am

etsoc.org/jhm
/article-pdf/21/3/475/4922725/jhm

d190125.pdf by N
O

AA C
entral Library user on 01 July 2020



rainfall and rapidly rising streamflow in a small, flood-

prone basin.

To establish whether the NWM can reasonably re-

produce observed streamflow, another watershed of

similar size and characteristics to ELLI is evaluated in

Fig. 12b. The outlet point of the Little Patuxent water-

shed (Little Patuxent River tributary above Lake

Elkhorn near Guilford, PTX1) was also impacted by a

significant flood wave during this event. Figure 12b

shows the rainfall and streamflow over this small tribu-

tary, in which precipitation was concentrated from

1900 UTC May 27 to 0100 UTC May 28 with the most

intense precipitation occurring from 2100 UTC 27 May

to 0000 UTC 28 May. Overall, the PTX1 watershed has

a very similar behavior to ELLI. The streamflow response

is very flashy due to the small catchment size, and the

signal of an intense event is clearly represented across the

different forecast cycles. Both of the small watersheds

shownhere indicate that theNWMis very sensitive to this

type of meteorological forcing; thus, given relatively

skillful HRRR forecasts, the NWM was consequently

skillful in indicating potential flood forecast conditions.

2) ANALYSIS OF LARGER WATERSHEDS

Figure 13 shows the rainfall and hydrographs of

downstream outlets where a larger upstream area is

contributing to the overall streamflow.

GWF1 (Fig. 13a) was first affected by the westward-

moving mesoscale storm complex. While some HRRR

cycles (1500, 1600, 1900UTC) significantly overestimate

(by nearly double the observed values) the main pre-

cipitation peak, this overestimation of precipitation

does not translate linearly into an equivalent twofold

overestimation of streamflow. Thus, in this watershed

NWM streamflow amounts do not appear to directly

correspond to given rainfall volumes. Here, the NWM

appears to underproduce runoff, leading to proportional

floodwave representation. The analysis of this specific

case suggests further investigation may be useful for

multiple events or longer time series, as it seems to point

out that changes to NWM runoff generation mecha-

nisms or relevant model parameters may be beneficial.

Over the Patuxent (PTX3) (Fig. 13b) the HRRR

precipitation forecasts possess some variability in time

and space, with both high and low precipitation biases

depending on the specific cycle. While the rainfall

forecasts show timing errors in both directions (too early

and too late), the NWM streamflow forecasts are sys-

tematically too early. Thus, the watershed response for

this basin appears to be faster in the NWM than what is

actually observed.

Finally, PAS3 represents how the event evolved along

the main stem of the Patapsco [which partially includes

the upstream contribution of the Tiber River in Ellicott

City (ELLI)], and thus also depicts forecast flood re-

sponse in one of the main flood-impacted regions.

Figure 13c shows observed peak precipitation between

1900 UTC 27 May and 0100 UTC 28 May with a maxi-

mum peak reached at 2200 UTC. Observed streamflow

shows a corresponding double-peak where the first in-

tense peak (750.4m3 s21) is reached at 2200 UTC,

while a second, much less intense hydrograph rise is

registered from 0200 UTC to 0700 UTC 28 May. The

NWM streamflow forecast realizations exhibit a sig-

nificantly different shape from the observed hydro-

graph here: the initial rising limb is significantly

underestimated or completely missing in all NWM

forecasts, while the second peak is overestimated or,

possibly, quite delayed. Because of the aforemen-

tioned importance of the PAS3 section, additional

analysis is performed below.

3) PATAPSCO RIVER ANALYSIS

The discordance between observed and forecasted

streamflow in the PAS3 section motivated additional

analysis over the Patapsco River. Here, additional river

sections have been considered along the main stem of

the Patapsco in order to understand the relationship

between flood wave propagation signals and NWM

forcings both upstream and downstream of the con-

fluence in Ellicott City. We specifically highlight the

PAS2 section, which is immediately downstream of the

confluence in Ellicott City, and also use another

available USGS streamflow gauge just upstream of

Ellicott City (USGS 01589000), as illustrated in the

map of Fig. 14.

First, to understand the observed hydrograph evolu-

tion, and in particular flood wave propagation, Figs. 14a

and 14c shows that the flood wave propagation time

from USGS 01589000 (upstream of Ellicott City) to the

PAS2 outlet (downstream of Ellicott City) is approxi-

mately 1h (blue dotted line). Further, the observed

shape of the hydrograph upstream of Ellicott City (black

line in Fig. 14a) exhibits a single peak at 2100 UTC,

while observed streamflow in PAS2 (black line in

Fig. 14c) has a double-peaked shape similar to that of the

PAS3 section (shown in Fig. 13c). With respect to tim-

ing, the red, dashed vertical line in Figs. 14b and 14c

shows the close correspondence in time (i.e., less than

1h) between the main peak occurring in Ellicott City

and the one observed in PAS2. This suggests that the

contribution of the first high-peak in the observed hy-

drographs of PAS2 (at 2100 UTC) and PAS3 (1 h later)

comes from the contribution of stream volume from

Ellicott City floodwaters, while the second later and

smaller observed rise (at 0400 UTC) of the hydrographs
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derive more from runoff contributions coming from

upstream.

The evolution of the NWM streamflow forecasts

upstream and downstream of Ellicott City differs sig-

nificantly from observations. The first observed peak

is notably underforecast for both PAS2 and PAS3

(Figs. 14c, 13c). This is likely due to delayed and un-

derforecast HRRR precipitation in the ELLI basin

(Fig. 12a). As discussed above, from a forecaster situa-

tional awareness perspective, the QPF in this basin was

sufficient to produce streamflow indicative of a potential

flood response during the event in general. However, in

terms of hydrologic impacts, here we see that critical

details in precipitation forcing (too little and too late)

and (possibly) hydrological model errors over this small

basin critically compound downstream forecast errors

found at PAS2 and PAS3. With respect to the second

observed hydrograph peak (0400 UTC for PAS2;

Fig. 14c), the NWM overestimation here is likely largely

explained by significant QPF overestimation in the far

(northwest) upstream reaches of PAS3 (Fig. 15). As

these upstream errors translate downstream, they manifest

in continued streamflow overestimation downstream of

Ellicott City (Fig. 14c).

FIG. 14. Additional sections considered for the flood propagation analysis along the Patapsco, with related hy-

drographs. (left) A map of the Patapsco watershed and the sections examined are reported in the legend. (right)

Hydrographs for the (a) USGS 01589000 section, (b) ELLI section, and (c) PAS2 section are represented. Vertical

dotted lines in the figure offer a reference to the reader to interpret the related text. The red dotted line represents

the correspondence between the peak happening in Ellicott City in (b) and PAS2 in (c). The violet line represents

the peak in the 1800 UTC cycle for ELLI in (b) and PAS2 in (c). The blue dotted line connects the hydrograph rise

at 0400 UTC from USGS 01589000 to the PAS2 section peak 1 h later, to indicate the travel time of the flood

propagation wave between these two sections.
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Thus, the competing effects of overdone QPF far

upstream in PAS3 and underdone, delayed QPF in the

ELLI basin result in noteworthy streamflow errors

depicted in Fig. 13c. We use this in-depth analysis on the

Patapsco to demonstrate the complex error interactions

that result from combined meteorological and hydro-

logic uncertainties. Taking a careful, multiscale, hy-

drometeorological approach is essential to understand

hydrologic model behavior, and an appreciation of all

potential NWM error sources is critical for both future

model development, as well as for appropriate and in-

formed use by forecasters.

4) DISCUSSION OF NWM STREAMFLOW

EVALUATION

The streamflow analysis presented highlights salient

forecast challenges that can vary with basin size. Over

smaller basins affected by this particular flood event

(ELLI and PTX1), the NWM response to generally

skillful HRRR QPF appears to be both physically

reasonable and accordingly skillful. Such capabilities

highlight that, particularly in small, ungauged locations,

provided skillful precipitation forecast forcing, NWM

analysis data and forecasts may offer useful flash flood

guidance (an especially useful potential complement to

operational NWS streamflow forecasts in areas that do

not currently receive them).

For this event, when NWM forecasts are evaluated

over larger basins, lower NWM forecast skill is found,

along with increased complexity in explaining the errors.

Over larger areas, additional factors must be considered

for these watersheds; for example, the distance between

the most intense rainfall and the watershed outlet point,

increased heterogeneity in land use and soil type, as well

as the contribution of propagating errors from other

contributing basins [as demonstrated in section 5b(3)].

In addition to that, because the water must travel across

longer distances in larger basins, sources of meteoro-

logical and hydrological uncertainties can combine and

grow quickly upscale, rendering even small displace-

ments of precipitation in time and space more likely to

significantly affect the final streamflow performance.

Note that this particular result is likely specific to the

examination of individual events. More traditional hy-

drologic forecast assessments over longer periods are

more likely to show enhanced skill for larger basins, as

small-scale errors average (effectively self-canceling)

out over time.

Finally, as stated by many studies (Bytheway et al.

2019, and references therein, Nelson et al. 2016; Smalley

et al. 2014), possible uncertainties in the radar based and

gauge-corrected QPE can always contribute to addi-

tional sources of uncertainties in the evaluation.

While completely isolating the causes of streamflow

forecast errors is well beyond the scope of this study

(and remains a grand challenge in hydrometeorological

science), some additional investigation and sensitivity

tests were performed to consider: (i) possible impacts of

land use change in the NWM, (ii) effects of streamflow

observation assimilation, (iii) sensitivity to antecedent

soil moisture conditions, (iv) surface and subsurface

runoff versus baseflow partitioning, and (v) NWM

model version. Given the aforementioned complexities

involved in disentangling the role of forcings, it is not

surprising that no clear singular error source emerged

from these analyses, but as they present possibilities for

future research, we briefly summarize the exploration of

these effects:

(i) The land use analysis comparing the NLCD 2011

land use (as used in the NWM version 1.2) with the

most recent NLCD 2016 product (Yang et al. 2018)

showed that the change in urban land cover was less

than 13%, and thus likely not significant enough to

critically affect the possible differences in soil

infiltration capabilities and runoff (Wigmosta and

Burges 2001).

(ii) Investigation of the impact of streamflow observa-

tion assimilation demonstrated that without assim-

ilation, the NWM tends to overestimate streamflow

in the Upper Patapsco, but that the magnitude of

this effect is quite small compared to the HRRR

overestimation at that time and location, again

underscoring the difficulty in quantifying the rela-

tive impact of all individual error sources.

(iii) The role of antecedent soil moisture in flash flood

generation was considered despite the lack of soil

moisture observations in the area. The operational

NWS tool known as ‘‘flash flood guidance’’ (FFG)

was used to indicate relative soil saturation condi-

tions, integrating analyzed current soil moisture

and streamflow conditions to estimate the amount

of rainfall required for a given time and area

to produce bankfull conditions on small streams

(Schmidt et al. 2007; Clark et al. 2014). Comparing

the operational FFG, HRRR QPF, and NWM

initial condition soil infiltration capacity demon-

strated that the FFG and NWM initial condition

are very similar, and each are exceeded by HRRR

QPF on hourly and 6-hourly time scales. Therefore,

anomalous NWM soil moisture conditions do not

appear to be a significant NWM error source for

this event, as might be expected for an intense, lo-

calized infiltration excess type of flash flood event

in a watershed with the shallow soil and steep ter-

rain as in Ellicott City.
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(iv) Relative contributions of surface flow and base flow

showed practically zero contributions from the

baseflow bucket model, confirming that the NWM

was likely appropriately partitioning surface and

subsurface runoff for this event.

(v) Finally, the potential for forecast improvement due

to changes made in subsequent NWM versions was

also explored, in particular comparing the perfor-

mance of the model at the time of this event

(version 1.2) with the subsequent operational ver-

sion 2.0. NWM version 2.0 introduced the out-of-

bank parameterization via compound channel and

new empirically based parameters that, together

with improved and extended calibration, might

FIG. 15. (a)–(g) Accumulated bias betweenHRRR cycles initialized from 1300 to 1900UTC 27May 2018 andMRMSQPE, as obtained

from the full 18-h duration of the short-range cycle using the Series Analysis tool from MET. The blue color means underestimation of

theHRRRcycle, as compared to theMRMS, while the red colormeans overestimation of theHRRRcycle over theMRMSQPE. The red

dot upstream represents USGS 01589000, and the red dot downstream represents the PAS2 section. The light blue contour indicates

the Ellicott City watershed.
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affect the NWM results for the Ellicott City event.

While the newer model version yielded some minor

improvements for some of the streamflow sections, it

did not solve the salient behaviors discussed above.

Though no single hypothesis test revealed a primary

NWM error source, all of these possibilities are worth

exploring more deeply in future work. With sufficient

additional cases and longer-term evaluation, such exer-

cises should expose and explain specific model error

sources and possible routing limitations such that results

can directly benefit ongoing model development and

make lasting improvements to future model versions.

c. Inundation areas

As noted in section 4b(1), the NWM outputs several

distributed hydrological variables, but it does not di-

rectly calculate flood inundation extent or depth.

Methods exist to create flood inundation maps from

the NWM output and provide potential benefit to

stakeholders (NOAA 2015). While these methods are

currently experimental, NOAA is working with other

federal partners to eventually bring a flood inunda-

tion mapping capability into operations. Following the

method described in section 4c, Fig. 16 shows the max-

imum extent of the flood inundation areas from forecast

cycles initialized from 1300 to 1900 UTC 27 May, com-

pared against the same inundation calculated from the

NWM Analysis (Fig. 16, red bold line). Given that the

NWM analysis seems to be a reasonable surrogate for

ground truth in the small ELLI region hit hardest by

flash flooding (as shown in the ELLI streamflow evalu-

ation), the flood inundation maps produced from the

NWM streamflow and the HAND method extend the

potential utility of the NWM outputs by providing a

spatial distribution of surface water and thus another

perspective of the potential impact of the flood over the

urban area.

Specifically, the 1400, 1800, and 1900 UTC cycles

(Fig. 16) closely match the flood inundation area, al-

though producing some overestimation over theHudson

branch area, north of Main Street. In contrast, the 1300,

1500, 1600, and 1700 UTC cycles tend to create less

flooding than the flood maximum flood from the NWM

analysis. In particular Fig. 16 highlights the 1800 UTC

cycle (Fig. 16, filled azure contour) and the 1700 UTC

cycle (Fig. 16, light aqua filled contour), as they are the

forecast cycles that better matches the NWM Analysis

and the ones that produce the smallest inundation ex-

tents, respectively. The smallest flood inundation extent

of the 1700 UTC cycle is consistent with the largest

underestimation of mean areal precipitation (Fig. 9) and

the lowest forecasted discharge (Fig. 12a) in the ELLI

watershed. Overall, however, all the forecast cycles are

consistent with the NWM analysis, reaching maximum

inundation extent in similar areas.

One major challenge in the development of flood in-

undation maps is that observations of urban flooding are

uncommon. Here, we use a unique collection of 12 street

cameras that were installed following the 2016 flood

(Ellicott City Unilux Camera Network; Peters 2019)

in order to compare the temporal evolution of the in-

undation map indicated from 2100 UTC 27 May to

0000 UTC 28 May. The temporal evolution analysis is

performed only for the 1800 UTC forecast cycle (as it

best matched observations both in terms of rainfall and

streamflow and therefore serves as a useful prototype)

(Fig. 17). Finally, we note that the areas surrounding the

Hudson Branch near Rogers Avenue are not included

in the NWM network due to NHDplus limitations, thus

the Roger Main camera location (number 9 in Fig. 6) is

discarded from the analysis.

The inundation extent maps produced from the

1800 UTC NWM forecast cycle show remarkable

agreement with street camera observations. In particular,

with respect to timing, the street cameras showmaximum

inundation extent occurring around 2300 UTC, and the

forecast flood inundation maps reflect this timing as well.

Furthermore, the cameras capture floodwaters beginning

to recede between 2300 UTC and 0000 UTC, and this

recession is also indicated by the flood inundation maps

at 0000UTC. Similar behavior in terms ofmaximum and

regression is observed also for the other street camera

locations, although limitations are found in locations

confined by buildings that are spaced close together

(e.g., the Tiber Alley camera is located in a very small

restaurant courtyard).

FIG. 16. Maximum extent of the flood inundation areas from

forecast cycles initialized from 1300 (white line) to 1900 UTC

(cobalt line) 27 May, compared against the same inundation cal-

culated from the NWM analysis (bold red line).
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While the NWM does not currently provide compre-

hensive inundation mapping as a native model output, it

is an area of ongoing work, and based on the evaluation

demonstrated here, the potential for forecast guidance

of surface flood extent and timing hours in advance

could be of significant help to forecasters, as well as

preparing for urban flood impacts and response such as

evacuation, preemptive road closure, and a potential

new angle to risk communication.

6. Conclusions

This multiscale evaluation of National Water Model

short-range forecasts during a high-impact flash flood

event in Ellicott City, Maryland, in May 2018 demon-

strates both the advantages and challenges of using the

NWM, a CONUS-scale, distributed hydrologic model-

ing system, to accurately predict the impacts of a local-

scale, short-duration flood event. The analysis proceeds

as a series of verification approaches across spatial

scales, beginning with the verification of HRRR model

precipitation forecasts as inputs to the NWM, then

moving to regional watershed-scale evaluations, and fi-

nally to the urban flooding scale in which experimental

flood inundation maps are evaluated using uniquely

available footage from street cameras.

While this particular study examines a single event, it

establishes a process for a joint hydrometeorological

evaluationmethodwhich is critical to understanding—and

ultimately improving—hydrologic model inputs and

outputs. We use local impacts and observations of ex-

treme events to begin disentangling multiple error and

skill sources from a complex modeling and forecast

system. Specifically for this event, mesoscale QPF veri-

fication reveals that the HRRR model produced skillful

forecast guidance for a high-intensity mesoscale event

over the Maryland region. Nevertheless, small dis-

placements on the order of a just few kilometers in

space and a few hours in time in the atmospheric inputs

can strongly influence the hydrological response at the

watershed scale, and shifts in cycle-to-cycle HRRR

forecast skill are accordingly seen in the resulting NWM

skill as well. Complementary gridded and object-based

precipitation verification approaches further demon-

strate the importance of a comprehensive approach to

QPF performance evaluation, especially when event

impacts are so sensitive to both atmospheric and hy-

drological uncertainties. For example, in the forecast

cycles investigated here, gridded verification suggests that

HRRR QPF was underestimated over the Ellicott City

region, while the object-based verification demonstrates

that HRRR correctly represented both precipitation in-

tensity and the salient characteristics of the mesoscale

storm, but was spatially offset. The hydrologic ramifica-

tions of the spatial shifts from an otherwise skillful QPF

highlights future opportunities in applying probabilistic

approaches, even using deterministic model output.

Watershed scale evaluation of the NWM suggests

that the hydrological response from the NWM is more

complex in larger basins, where the propagation and

accumulation of uncertainties from the meteorological

forcings to the streamflow outputs influence the result-

ing hydrologic forecasts more profoundly. Additional

investigation at still finer scales is required to more

completely explore the hypotheses posed here regarding

specific NWM error sources. In addition to streamflow

FIG. 17. Hourly evolution of the forecast mapped flood extent from 2100 UTC 27 May to 0000 UTC 28 May from the forecast cycle

initialized at 1800 UTC. The red dot represents the camera footage and orientation.
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verification at the watershed scale, the potential utility

of using the NWM in ungauged areas is also demon-

strated. For small-scale watersheds, the NWM response

is linked very clearly to the meteorological forcing in-

puts. Intense rainfall directly translated to an intense

flooding event in both of the smaller watersheds exam-

ined. While errors in timing and volumes at these scales

can be attributed to both the quality of forcings and

hydrologic model response, across consecutive model

forecast cycles, indications of the possibility of a fast-

onset flash flood event would likely have offered short-

term forecast utility.

Finally, at the urban scale, we demonstrate that

experimental HAND method–based flood inundation

maps may offer promise for anticipating the extent and

the timing of the flood inundation areas. Because of

its computational simplicity, the HAND method, when

coupled with the NWM streamflow forecasts, can quickly

yield flood inundation maps. As such, the coupling of

HAND and NWM may be a valuable operational fore-

casting asset for emergency weather preparedness and

response, where high forecast temporal resolution is of-

ten preferred. For the specific case of the Ellicott City

event, maps compared to street video camera footage

reveal the potential benefit and skill of this NWM-driven

capability. While this method remains under ongoing

development, a successful forecast example is shown here

in the accurate prediction of urban flood inundation with

2-h lead time.

In summary, the evaluation of the NWM for the May

2018 Ellicott City, Maryland, flood suggests potential

advantages and forecast utility in using the CONUS-

scale, high-resolution, distributed NWM to predict high-

impact, local scale flood events, while also underscoring

the need to comprehensively evaluate model perfor-

mance at local scales and for high-impact, rare events. A

salient challenge identified by the combination of hy-

drologic and meteorological evaluation is that while

streamflow is the standard, and in most ways most

straightforward, hydrologic model output field to verify,

it is merely a single output of a modeling system that

is simultaneously representing and predicting many

complex processes above and below Earth’s surface.

Specifically, model representation of soil infiltration

capacity and soil saturation, heat and moisture fluxes

on land and runoff partitioning, heterogeneity of the

geographical domain, and model calibration are chal-

lenges at and below the surface; meteorological forc-

ing (precipitation in particular) errors represent an

additional, and often primary, source of uncertainty to

successful hydrometeorological prediction. This case

study also clearly demonstrates that even with gener-

ally skillful precipitation forecast inputs at the larger

mesoscale, there are yet additional hydrologic basin-

scale sensitivities that highlight a dilemma: hydrologic

response will be simpler and likely more skillful over a

small, limited-area basin. However, precise and accurate

precipitation forecasts over small areas (particularly for

heavy convective rainfall flash flood events) remain an

outstanding atmospheric NWP challenge. At larger

scales, QPF may be considered more predictable, but

complex hydrometeorological interactions accumulate

errors. Ongoing regional and case study analysis is

necessary tomore fully understand both the benefits and

risks of using a national hydrologic model tool, such as

the NWM, to connect CONUS-scale forcings to local

scale impact predictions. Through such future work

the larger hydrometeorological forecast community can

better understand the potential of this model and others

like it to give hydrological forecast guidance and to

optimally complement existing operational local models

to provide the most useful forecast guidance across

scales of interest.
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